

Drill Pipe Performance Sheet

Size and Weight: 4.500" 16.60 ppf 0.337" wall IEU*

Grade: S-135 Range: 2

Tool Joint: 5.250" x 3.000" *Delta425*

Pipe Body:

	Nominal 100% RBW	95% RBW	Ultra Class 90% RBW	Premium 80% RBW
OD (in):	4.500	4.466	4.433	4.365
Wall Thickness (in):	0.337	0.320	0.303	0.270
Nominal ID (in):	3.826	3.826	3.826	3.826
Tensile Strength (lbs):	595,004	562,966	531,168	468,296
Torsional Strength (ft-lbs):	55,453	52,405	49,389	43,450
Burst Capacity (psi):	17,693	19,209	18,198	16,176
Collapse Capacity (psi):	16,773	15,354	13,913	10,964

Tubular Assembly:

Adjusted Weight (lbs/ft): 18.94 Fluid Displacement (gal/ft): 0.29 Approximate Length (ft): 31.5 Fluid Displacement (bbls/ft): 0.0069

Box TJ Length (in): 15 Fluid Capacity w/IPC (gal/ft): 0.56 Pin TJ Length (in): 12 Fluid Capacity w/IPC (bbls/ft): 0.0133

Upset Type: IEU* Fluid Capacity w/o IPC (gal/ft): Not Reported Max Upset OD (in): 4.600 Fluid Capacity w/o IPC (bbls/ft): Not Reported Drift Size (in): 2.875

Notes: Body properties are calculated based on uniform OD and wall thickness.

Note: These are OEM values that may vary with actual values due to mill tolerances, IPC tolerances, OEM rounding, and other factors. Pipe is purchased at a guaranteed 95% RBW. IPC is applied to a nominal thickness of 0.009".

Burst capacity for	Nominal (100%	RBW) based or	n 87.5% RBW	per API.	

Connection: *De	Ita425*	<u>1.0 FF</u>	<u>1.1 FF</u>	<u>1.15 FF</u>
TJ OD (in): 5.250	Extended MUT (ft-lbs):	30,435	33,479	<mark>35,000</mark>
TJ ID (in): 3.000	Tension at Shoulder Separation @ Ext MUT (lbs):	Tensile Limited	Tensile Limited	Tensile Limited
MYS (ksi): 130	Tension at Connection Yield @ Ext MUT (lbs):	471,700	471,700	471,700
Maximum MUT is recommended based on thread compound	Maximum MUT (ft-lbs):	26,000	28,600	29,900
friction factor (unless stated). Lower than maximum MUT	Tension at Shoulder Separation @ Max MUT (lbs):	Tensile Limited	Tensile Limited	Tensile Limited
should only be used when MUT	Tension at Connection Yield @ Max MUT (lbs):	628,943	628,943	628,943
is limited by rig equipment or connection tensile. Lower than minimum MUT should never be	Minimum MUT (ft-lbs):	21,600	23,760	24,840
used.	Tension at Shoulder Separation @ Min MUT (lbs):	Tensile Limited	Tensile Limited	Tensile Limited
	Tension at Connection Yield @ Min MUT (lbs):	786,179	786,179	786,179
	ons where stick-slip or backoff is a concern, using the 15FF is highly recommended based on field performance			
	Tool Joint Torsional Strength (ft-lbs):	43,300	47,630	49,795
	Tool Joint Tensile Strength (lbs):	786,179	786,179	786,179

Elevator Shoulder:

Smooth Edge Height (in): 3/32 Smooth Edge OD (in): 5.438 SE Elevator Shoulder Capacity (lbs): 579,800

Nominal TJ OD (in): 5.250 Nominal TJ OD Elevator Shoulder Capacity (lbs): 406,800 Assumed Elevator Bore (in): 4.781

Note: Elevator capacity based on assumed elevator bore, no wear factor, and contact stress of 110, 100 psi. An increased elevator shoulder OD increases elevator capacity without affecting make-up torque.

Note: There is no published pressure rating for this connection.

ADJUST makeup torque according to thread compound friction factor (FF) greater than 1.0 up to 1.15 FF. Not to exceed 1.15 regardless of dope FF. Reference Page 3

The technical information contained herein, including the product performance sheet and other attached documents, has been extracted from information available from the manufacturer and is for reference only and not a recommendation. The user is fully responsible for the accuracy and suitability of use of the technical information. Workstrings International cannot assume responsibility for the results obtained through the use of this material. No expressed or implied warranty is intended. Drill pipe assembly properties are calculated based on uniform OD and wall thickness. No safety factor is applied. The information provided for various inspection classes and for various wear conditions (remaining body wall) is for information only and does not represent or imply acceptable operational practices, and to apply a prudent safety factor suitable for the application. For API connections that have different pin and box IDs, tool joint ID refers to the pin ID. Per Chapter B, Section 4 VII of the IADC drilling manual, it is recommended that drilling torque should not exceed 80% of MUT

Combined Loading for Drill Pipe

Connection: Delta™ 425 5.25" x 3.0" (130 KSI SMYS) Friction Factor: 1.15 Pipe: 4.5" OD 0.337" Wall Thickness S135 80% Inspection Class

p			
At Max MUT (350000 ft-lbs)			
Operational	Assembly Max		
Torque(ft-lbs)	Tension(lbs)		
0	468300		
1700	467900		
3400	466900		
5000	465200		
6700	462700		
8400	459500		
10100	455500		
11700	451000		
13400	445500		
15100	439100		
16800	431900		
18500	423700		
20100	415200		
21800	405100		
23500	393900		
25200	381500		
26800	368600		
28500	353500		
30200	336700		
31900	318000		

The Technical information contained herein, including the product performance sheet and other attached documents, is for reference only and should not be consider as a recommendation. The user is fully responsible for the accuracy and suitability of use of the technical information. NOV Grant Prideco cannot assume responsibility for the results obtained through the use of this material. No expressed or implied warranty is intended. Drill pipe assembly properties are calculated based on uniform OD and wall thickness. No safety factor is applied. The information provided for various inspection classes and for various wear conditions (remaining body wall) is for information only and does not represent or imply acceptable operating limits. It is the responsibility of the customer and the end user to determine the appropriate performance ratings, acceptable use of the product, maintain safe operating practices, and to apply a prudent safety factor suitable for the application. For API connections that have different pin and box IDs, tool joint ID refers to the pin ID. Per Chapter B, Section 4 VII of the drilling manual, it is recommended that drilling torque should not exceed 80% of MUT.

Connection Wear Table

Connection: Delta™ 425 5.25" x 3.0" (130 KSI SMYS) Friction Factor: 1.15

Tool Joint OD (in)	Max MUT(ft-lbs)
5.25	34800
5.219	34800
5.189	34000
5.158	33100
5.128	32200
5.097	31200
5.067	30300
5.036	29400
5.006	28500
4.975	27500
4.945	26700
4.914	25800

Elevator Capacity

Elevator Bore Diameter: 4.78175" Elevator SMYS: 110,100 psi Box Taper Angle: 18 deg Connection: Delta™ 425 4.5" 0.337" wall IEU S135

Tool Joint OD (in.)	Elevator Hoist Capacity (lbs)		
	No Wear	1/32" Wear Factor	
5.25	406200	380300	
5.219	378100	352200	
5.189	351100	325200	
5.158	323400	297500	
5.128	296700	270800	
5.097	269300	243400	
5.067	242900	217000	
5.036	215800	189900	
5.006	189800	163900	
4.975	163000	137100	
4.945	137300	111400	
4.914	110900	85000	

All references to any internal standards or specifications are per the current edition/revision at the point of manufacturing, unless otherwise stated. All references to any external standards or specifications are per the current edition/revision at the original purchase order (P.O.) date, unless otherwise stated.

WORKSTRINGS INTERNATIONAL®

"YOUR FIRST CHOICE IN DOWNHOLE TUBULAR RENTALS"

A SUPERIOR ENERGY SERVICES COMPANY

Makeup Torque Guidelines

- Good COPPER-BASED thread compound is recommended for rotary-shouldered drill pipe connections by the OEM.
- Be LIBERAL with the thread compound in the box, the base of the box, and on the pin using a copper-based or a compatible thread compound.
- Ensure **360 DEGREES** of coverage of the threads and torque shoulders.
- Ensure **360 DEGREES** of coverage on the seal surfaces on completion pipe.
- Always **ENSURE** proper pipe alignment.
- **ADJUST** makeup torque according to thread compound friction factor (FF) greater than 1.0 FF up to 1.15 FF. Workstrings Engineering is available for more information.
- **MINIMIZE** clamp pressure with the tongs or iron roughneck.
- **MAXIMIZE** the distance between the box shoulder and lower jaw die per OEM guidelines (1"-2" minimum for most tool joints).
- Use a SLOW rotation speed during spin-up and break-out of the first 5-6 threads especially critical for premium and completion connections.

NOTE: More detailed running procedures for proprietary rotary-shouldered connections are available from the OEM's website (NOV Grant Prideco and Tenaris), Workstrings Engineering or Workstrings' website.

For all of our current specification sheets, please visit workstringsinternational.com/equipment/spec-sheets/

Global Headquarters

1150 Smede Hwy Broussard, LA 70518 - USA

Phone: +1 337-989-9675

Email: info@workstrings.com

Engineering & Marketing

1001 Louisiana St., Suite 2900

Houston, TX 77002 - USA

Phone: +1 281-999-0047

Email: marketing@workstrings.com

EMEA Corporate

Kirkton Avenue, Dyce Aberdeen, AB21 OBF - UK

Phone: +44 1224-724900

Email: sales.uk@workstrings.com

www.workstringsinternational.com